IERG4300 Web-Scale Information Analytics

Finding Similar Items and Locality Sensitive Hash (LSH)

Prof. Wing C. Lau Department of Information Engineering wclau@ie.cuhk.edu.hk

Acknowledgements

- Many slides used in this chapter are adapted from:
 - CS246 Mining Massive Data-sets, by Jure Leskovec, Stanford University.
 - COMS 6998-12 Dealing with Massive Data, by Sergei Vassilvitskii, (Yahoo! Research), Columbia University

All copyrights belong to the original author of the material.

Scene Completion Problem

Scene Completion Problem

Scene Completion Problem

10 nearest neighbors from a collection of 20,000 images

Scene Completion Problem

10 nearest neighbors from a collection of 2 million images

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space
- Examples:
 - Web Pages with similar words
 - For duplicate detection, classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features
 - Users who visited the similar websites

Relation to Previous Topic

Last time: Finding frequent pairs

Single pass but requires space quadratic in the number of items

N ... number of distinct items K ... number of items with support $\ge s$

<u>First pass:</u> Find frequent singletons For a pair to be **a candidate for a frequent pair**, its singletons have to be frequent! <u>Second pass:</u> **Count only candidate pairs!**

Relation to Previous Topic

- Last time: Finding frequent pairs
- Further improvement: PCY
 - Pass 1:
 - Count exact frequency of each item:

Take pairs of items {i,j}, hash them into B buckets and count of the number of pairs that hashed to each bucket:

Relation to Previous Topic

- Last time: Finding frequent pairs
- Further improvement: PCY
 - Pass 1:
 - Count exact frequency of each item:
 - Take pairs of items {i,j}, hash them into B buckets and count of the number of pairs that hashed to each bucket:
 - Pass 2:
 - For a pair {i,j} to be a candidate for a frequent pair, its singletons have to be frequent and it has to hash to a frequent bucket!

Items 1...N

Relation to Previous Lecture

Fu <u>Previous lecture: A-priori</u>

Main idea: Candidates

Las

Instead of keeping a count of each pair, only keep a count for candidate pairs!

Today's lecture: Find pairs of similar docs Main idea: Candidates

-- Pass 1: Take documents and hash them to buckets such that documents that are similar hash to the same bucket
 -- Pass 2: Only compare documents that are candidates
 (i.e., they hashed to a same bucket)
 Benefits: Instead of N² comparisons, we need O(N) comparisons to find similar documents

4}

Finding Similar Items

Distance Measures

Goal: Find near-neighbors in high-dim. space

- We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Today: Jaccard distance (/similarity)
- The Jaccard Similarity/Distance of two sets is the size of their intersection / the size of their union:
- $sim(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$
- $d(C_1, C_2) = 1 |C_1 \cap C_2| / |C_1 \cup C_2|$

3 in intersection 8 in union Jaccard similarity= 3/8 Jaccard distance = 5/8

Finding Similar Documents

 Goal: Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates"

Applications:

- Mirror websites, or approximate mirrors
 - Don't want to show both in a search
- Similar news articles at many news sites
 - Cluster articles by "same story"

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- 2. Minhashing: Convert large sets to short signatures, while preserving similarity
- Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!

The Big Picture

of strings of length *k* that appear in the document

Shingling

Shingling:

Documents as High-Dim Data

- Step 1: Shingling: Convert documents to sets
- Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles (aka n-grams)!

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- Example: k=2; document D₁= abcab Set of 2-shingles: S(D₁)={ab, bc, ca}
 - Option: Shingles as a bag (multiset), count ab twice: S'(D₁)={ab, bc, ca, ab}

Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a doc by the set of hash values of its k-shingles
 - Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hashvalues were shared
- Example: k=2; document D₁= abcab Set of 2-shingles: S(D₁)={ab, bc, ca} Hash the shingles: h(D₁)={1, 5, 7}

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - k = 10 is better for long documents

Similarity Metric for Shingles

- Document D₁ = set of k-shingles C₁=S(D₁)
- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

 $Sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- Example: C₁ = 10111; C₂ = 10011
 - Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = 3/4
 - d(C₁,C₂) = 1 (Jaccard similarity) = 1/4

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
 - 1 in row *e* and column *s* if and only if *e* is a member of *s*
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- Each document is a column:
 - Example: sim(C₁,C₂) = ?
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - d(C₁,C₂) = 1 (Jaccard similarity) = 3/6

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among N=1 million documents
- Naïvely, we'd have to compute pairwise
 Jaccard similarites for every pair of docs
 - i.e, N(N-1)/2 ≈ 5*10¹¹ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N = 10 million, it takes more than a year...

The set of strings of length *k* that appear in the document Signatures:

short integer vectors that represent the sets, and reflect their similarity

MinHashing

Minhashing:

Outline: Finding Similar Columns

So far:

- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures
 Approach:
 - I) Signatures of columns: small summaries of columns
 - 2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures & columns are related
 - 3) Optional: Check that columns with similar signatures are really similar

Warnings:

- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures)

- Key idea: "hash" each column C to a small signature H(C), such that:
 - (1) *H*(*C*) is small enough that the signature fits in RAM
 - (2) sim(C₁, C₂) is the same as the "similarity" of signatures H(C₁) and H(C₂)
- Goal: Find a hash function H(·) such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $H(C_1) = H(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $H(C_1) \neq H(C_2)$
- Hash documents into buckets, and expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

Goal: Find a hash function H(·) such that:

- if $sim(C_1, C_2)$ is high, then with high prob. $H(C_1) = H(C_2)$
- if $sim(C_1, C_2)$ is low, then with high prob. $H(C_1) \neq H(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for Jaccard similarity: Min-hashing

Estimating $sim(V, W) = |V \cap W| / |V \cup W|$ • Key Idea:

If we pick a "winner", say x, among all elements of $V \cup W$ in *a uniformly random manner*, then:

Prob[Element x is the winner] = $1 / |V \cup W|$

and

 $Prob[x \in V \cap W] = |V \cap W| / |V \cup W| = sim(V, W)...Eq.(1)$

⇒ If we can repeat the experiment many times and be able to detect and count the cases of "winner $\in V \cap W$ ", we can estimate Prob[x $\in V \cap W$], and thus sim(V, W) (per

Eq.(1):

- Algorithm 1 Similarity(V,W)
- 1: counter $\leftarrow 0$
- 2: for i = 1 to 100 do
- 3: Pick a random element $x \in V \cup W$
- 4: if $x \in V \land x \in W$ then
- 5: $counter \leftarrow counter + 1$
- 6: return counter/100

Now, let's use the following way to pick a winner within $V \cup W$ in a uniformly random manner :

•After randomly permute the ordering of all elements in $V \cup W$, assign a *unique* value to each element according to its order in the resultant permutation, e.g. "1" to the 1st element, "2" to the 2nd element, and so on(*)

Now, let's use the following way to pick a winner within $V \cup W$ in a uniformly random manner :

•After randomly permute the ordering of all elements in $V \cup W$, assign a *unique* value to each element according to its order in the resultant permutation, e.g. "1" to the 1st element, "2" to the 2nd element, and so on(*)

- Now, let's use the following way to pick a winner within $V \cup W$ in a uniformly random manner :
- •After randomly permute the ordering of all elements in $V \cup W$, assign a *unique* value to each element according to its order in the resultant permutation, e.g. "1" to the 1st element, "2" to the 2nd element, and so on(*)
- Among all elements in $V \cup W$, we declare the element, say x, with the smallest assigned value (according to (*)), the winner of $V \cup W$.
- Similarly, within set V, we declare the element with the smallest assigned value (according to (*)), the winner of set V.
- Similarly, within set W, we declare the element with the smallest assigned value (according to (*)), the winner of set W.

- Now, try another randomly permutation, followed by value assignment;
- This time, say, e becomes the element with the smallest value assigned and thus the winner!

Notice that $e = Winner of V \cup W = Winner of V = Winner of W$

(The winning element $x \in V \cap W$) iff (The winner of V is also the winner of W)

Estimating *sim*(V, W)=|V∩W|/|V∪W| (cont'd)

Observe that:

(The winning element $x \in V \cap W$) iff (The winner of set V is also the winner of set W)(**)

Since the event of the R.H.S. of (**) is readily observable, we can use this condition to determine whether x, the winning element of the current permutation belongs to V \cap W.

By repeating the experiment in (*) using different random permutations and count the number of times the event specified in the R.H.S. of (**) is observed,

we can estimate $Prob[x \in V \cap W]$ (which is = sim(V, W)) according to Eq.(1) as follows:

Algorithm 2 Similarity(V, W)

- $1: counter \leftarrow 0$
- 2 : for i = 0 to N do

- 3: Randomly permute the ordering of elements in $V \cup W$
- 4: Assign a value to each element according to the resultant order
- 5: if (smallest value within V == smallest value within W)
- 6: $counter \leftarrow counter + 1$
- 7: end / * of for * /
- 8: return (counter / N) / * as an est. of sim(V, W) * /

- Now, try another randomly permutation, followed by value assignment;
- This time, say, e becomes the element with the smallest value assigned and thus the winner!

Notice that $e = Winner of V \cup W = Winner of V = Winner of W$

(The winning element $x \in V \cap W$) iff (The winner of V is also the winner of W)

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function h_π(C) = the row number of the first row (according to permuted order π) in which column C has a value of 1:
 - We skip rows with a zero because it means the corresponding element is NOT a member of Col. C anyway !

Define $h_{\pi}(C) = row \#$ (after permutation π) of winner of Col. C

- Alternatively, we can also use: $h'_{\pi}(C) = row \# (before permutation \pi) of winner of Col. C$
- Use several (e.g., 100) independent hash (permutation) functions to create a signature of a column.

Min-Hashing Example

Note: Another (equivalent) way is to

store row indexes before permutation

Signature matrix M

1	5	1	5
2	3	1	3
6	4	6	4

Permutation π

2

3

7

6

1

5

4

Input matrix (Shingles x Documents)

• Prob[$h_{\pi}(C_1) = h_{\pi}(C_2)$] is the same as sim(D_1 , D_2)

Alternative Derivation for

 $\Pr[Same winner for C_1 \& C_2] = \Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$

Given cols C₁ and C₂, there are 4 types of rows:

a = # rows of type A, etc.
By definition of Jaccard Similarity: sim(C₁, C₂) = a/(a +b +c).....Eq.(2)

Now, after random shuffling of rows, look down the cols of C₁ and C₂ row-by-row until we see at least one 1: (i.e. a winner is detected)
If it's a type-A row => same winner for C₁ and C₂, i.e. h(C₁) = h(C₂),
If a type-B or type-C row, then different winners for C₁ and C₂
BUT: Pr[Same winner for C₁ and C₂]
= Pr [h(C₁) = h(C₂)] = Pr[h'(C₁) = h'(C₂)]
= Pr[Reaching a type-A row before a type-B or type-C row]
= a/(a +b +c) /* due to the # of type-A,B,C, rows in C₁ and C₂ */
= sim(C₁, C₂) /* by Eq.(2) */

Similarity for Signatures

As a result, we have: $Pr[winner of C_1 = winner of C_2] =$ $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2).....Eq.(3)$

- We will use multiple hash functions to realize different random permutations among the elements within the Columns
- Define the similarity of two signatures to be the fraction of the hash functions in which they agree
- Per Eq.(3), the similarity of columns (2 sets) is the same as the expected similarity of their signatures

MinHash Signatures

- Pick K=100 random permutations of the rows
 Think of sig(C) as a column vector
- sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C
 Note: The sketch (signature) of document C is small -- ~100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
 - Pick K = 100 hash functions k_i
 - Ordering under k_i gives a random row permutation!

One-pass implementation

- For each column C and hash-func. k_i keep a "slot" for the min-hash value
- Initialize all sig(C)[i] = ∞

Scan rows looking for 1s

- Suppose row *j* has 1 in column *C*
- Then for each k_i:
 - If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing:

 $h_{a,b}(x)=((a \cdot x+b) \mod p) \mod N$ where:

a,b ... random integers p ... prime number (p > N)

similarity

Locality Sensitive Hashing

ument

Locality-sensitive hashing:

LSH: First Cut

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a function *f(x,y)* that tells whether *x* and *y* is a *candidate pair*: a pair of elements whose similarity must be evaluated

For minhash matrices:

- Hash columns of signature matrix M to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair

Candidates from Minhash

Pick a similarity threshold s (0 < s < 1)</p>

Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:

M (i, x) = M (i, y) for at least frac. s values of i

 We expect documents *x* and *y* to have the same (Jaccard) similarity as is the similarity of their signatures

LSH for Minhash

- Big idea: Hash columns of signature matrix *M* several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition M into b Bands

2	1	4	1
1	2	1	2
2	1	2	1

Signature matrix M

b bands

Partition M into Bands

- Divide matrix *M* into *b* bands of *r* rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Hashing Bands

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands

Assume the following case:

- Suppose 100,000 columns of *M* (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band
- Goal: Find pairs of documents that are at least *s* = 0.8 similar

C₁, C₂ are 80% Similar

- Find pairs of ≥ s=0.8 similarity, set b=20, r=5
- Assume: sim(C₁, C₂) = 0.8
 - Since sim(C₁, C₂) ≥ s, we want C₁, C₂ to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C₁, C₂ identical in one particular band: (0.8)⁵ = 0.328
- Probability C₁, C₂ are *not* similar in all of the 20 bands: (1-0.328)²⁰ = 0.00035
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

C₁, C₂ are 30% Similar

Find pairs of ≥ s=0.8 similarity, set b=20, r=5

- Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO common buckets (all bands should be different)
- Probability C₁, C₂ identical in one particular band: (0.3)⁵ = 0.00243
- Probability C₁, C₂ identical in at least 1 of 20 bands: 1 (1 0.00243)²⁰ = 0.0474
 - In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Involves a Tradeoff

2	1	4	1
1	2	1	2
2	1	2	1

Pick:

- the number of minhashes (rows of *M*)
- the number of bands b, and
- the number of rows *r* per band
 to balance false positives/negatives
- Example: if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH – What We Want

Similarity $s = sim(C_1, C_2)$ of two sets \longrightarrow

What 1 Band of 1 Row Gives You

Similarity $s = sim(C_1, C_2)$ of two sets \longrightarrow

b bands, r rows/band

- Columns C₁ and C₂ have similarity s
- Pick any band (r rows)
 - Prob. that all rows in band equal = s^r
 - Prob. that some row in band unequal = 1 s^r
- Prob. that no band identical = $(1 s^r)^b$
- Prob. that at least 1 band identical =
 1 (1 s^r)^b

What b Bands of r Rows Gives You

S-curves as a Func. of b and r

Given a fixed threshold *t*.

We want to choose *r* and *b* such that the *P(Candidate pair)* has a "step" right around *t*.

Example: *b* = 20; *r* = 5

- Similarity level s
- Prob. that at least 1 band is identical:

S	1-(1-s ^r) ^b	
.2	.006	
.3	.047	
.4	.186	
.5	.470	
.6	.802	
.7	.975	
.8	.9996	

Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions (r=5, b=10)

Blue area: False Negative rate Green area: False Positive rate

LSH Summary

- Tune *M*, *b*, *r* to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-hashing: Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property Pr[h_π(C₁) = h_π(C₂)] = sim(C₁, C₂)
 - We used hashing to get around generating random permutations
- Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find **candidate pairs** of similarity ≥ **s**
 - Notice that MinHash is only good for constructing LSH under the Jaccard similarity ;
 - Other Hash functions exist for LSH under for other similarity metrics, e.g. cosine similarity or hamming distance etc.

Theory of Locality Sensitive Hashing (LSH)

Generalization of LSH for other Distance Metrics

- MinHash works for Jaccard Similiarity [d(x,y) = 1 sim(x,y)]
- Different LSH methods for other distance metrics:
 - Cosine distance,
 - Euclidean distance etc

Locality-Sensitive (LS) Families

- Suppose we have a space S of points with a distance measure d
- A family *H* of hash functions is said to be (*d*₁, *d*₂, *p*₁, *p*₂)-*sensitive* if for any *x* and *y* in *S*:
 - 1. If $d(x, y) \le d_1$, then the probability over all $h \in H$, that h(x) = h(y) is at least p_1
 - 2. If $d(x, y) \ge d_2$, then the probability over all $h \in H$, that h(x) = h(y) is at most p_2

A (d_1, d_2, p_1, p_2) -sensitive function

Recap: The S-Curve

The S-curve is where the "magic" happens

Similarity s of two sets

This is what 1 band & 1 row gives you $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(D_1, D_2)$ Similarity s of two sets

This is what we want! How to get a step-function? By choosing *r rows* and *b bands*!

Recap: The S-Curve

The S-curve is where the "magic" happens

Distance *d* of two sets

This is what 1 band and 1 row gives you $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(D_1, D_2)$ $= 1 - distance(D_1, D_2)$ Distance *d* of two sets

This is what we want! How to get a step-function? By choosing *r* rows and *b* bands !

A (d_1, d_2, p_1, p_2) -sensitive function

Large distance, low probability of hashing to the same value

Cosine Distance

Cosine distance = angle between vectors from the origin to the points in question $d(A, B) = \theta = \arccos(A \cdot B / \|A\| \cdot \|B\|)$ A·Β - Has range $0 ... \pi$ (equivalently $0...180^\circ$ **IB** • Can divide θ by π to have distance in range 0...1 Cosine similarity = 1-d(A,B) $A \cdot B$ But often defined as cosine sim: $cos(\theta)$ - Has range -1...1 for

Opposite scores

Score Vectors in opposite direction

Angle between then is near 180 deg

Cosine of angle is near -1 i.e. -100%

general vectors - Range 0..1 for non-negative vectors (angles up to 90°)

Similar scores Score Vectors in same direction Angle between then is near 0 deg. Cosine of angle is near 1 i.e. 100% Unrelated scores Score Vectors are nearly orthogonal Angle between then is near 90 deg. Cosine of angle is near 0 i.e. 0%

Jure Leskovec, Stanford CS246: Mining Massive Datasets

B
LSH for Cosine Distance

- For cosine similarity = cos θ = (A·B / |A|||B|)
- cosine distance d(A, B) = θ/180
- There is a technique called Random Hyperplanes
 - Technique similar to Minhashing
- Random Hyperplanes is a

(*d*₁, *d*₂, (1-*d*₁/180), (1-*d*₂/180))-sensitive family for any *d*₁ and *d*₂

- Reminder: (d₁, d₂, p₁, p₂)-sensitive
 - 1. If $d(x,y) \le d_1$, then prob. that h(x) = h(y) is at least p_1
 - 2. If $d(x,y) \ge d_2$, then prob. that h(x) = h(y) is at most p_2

Α

 $\theta \in [0, 180]$

A·B

IIRI

Random Hyperplane

Pick a random vector v, which determines a hash function h_v with two buckets s.t.:

Signatures for Cosine Distance

- Pick some number of random vectors v, and hash your data for each vector
- The result is a signature (sketch) of
 +1's and -1's for each data point: x, y, ...
- Can be used for LSH like we used the Minhash signatures for Jaccard distance
- Amplify using AND/OR constructions

How to pick random vectors?

- Expensive to pick a random vector in *M* dimensions for large *M*
 - Would have to generate *M* random numbers

A more efficient (but approximated) approach

- It is "close enough" to consider only vectors v consisting of +1 and -1 components
 - Why? Assuming data is random, then vectors of +/-1 cover the entire space evenly (and does not bias in any way)
 - This only gives an APPROXIMATED result, but not an exact one !!

LSH for Euclidean Distance

Simple idea: Hash functions correspond to lines

- Partition the line into buckets of size *a*
- Hash each point to the bucket containing its projection onto the line
- Nearby points are always close; distant points are rarely in same bucket

 Distant points end up in different buckets

Multiple Projections

Projection of Points

For example, If points are distance d ≤ a/2, the probability they are in same bucket ≥ 1- d/a = 1/2

Projection of Points

For example, if points are distance *d* ≥ 2*a* apart, then they can be in the same bucket only if *d cos* θ ≤ *a* => cos θ ≤ ½
 So, for 6o ≤ θ ≤ 90, i.e., at most 1/3 probability

An LSH-Family for Euclidean Distance

- If points are distance d ≤ a/2, prob. they are in same bucket ≥ 1- d/a = ½
- If points are distance $d \ge 2a$ apart, then they can be in the same bucket only if $d \cos \theta \le a$
 - $\cos \theta \leq \frac{1}{2}$
 - 60 ≤ θ ≤ 90, i.e., at most 1/3 probability
- Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a
- Amplify using AND-OR cascades