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10 nearest neighbors from a collection of 20,000 images
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LSH 610 nearest neighbors from a collection of 2 million images
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¡ Many problems can be expressed as 
finding “similar” sets:
§ Find near-neighbors in high-dimensional space

¡ Examples:
§ Web Pages with similar words

§ For duplicate detection, classification by topic
§ Customers who purchased similar products

§ Products with similar customer sets
§ Images with similar features
§ Users who visited the similar websites
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¡ Last time: Finding frequent pairs

Ite
m

s 
1…

N

Items 1…N

Count of pair {i,j} 
in the data

Naïve solution:
Single pass but requires 
space quadratic in the 
number of items

Ite
m

s 
1…

K

Items 1…K

Count of pair {i,j} 
in the data

A-priori:
First pass: Find frequent singletons
For a pair to be a candidate for a 
frequent pair, its singletons have to 
be frequent!
Second pass:
Count only candidate pairs!

N … number of distinct items
K … number of items with support ³ s
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¡ Last time: Finding frequent pairs
¡ Further improvement: PCY
§ Pass 1:

§ Count exact frequency of each item:
§ Take pairs of items {i,j}, hash them into B buckets and 

count of the number of pairs that hashed to each bucket:

Items 1…N

Basket 1: {1,2,3}
Pairs: {1,2} {1,3} {2,3}

Buckets 1…B
2                        1
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¡ Last time: Finding frequent pairs
¡ Further improvement: PCY
§ Pass 1:

§ Count exact frequency of each item:
§ Take pairs of items {i,j}, hash them into B buckets and 

count of the number of pairs that hashed to each bucket:

§ Pass 2:
§ For a pair {i,j} to be a candidate for 

a frequent pair, its singletons have 
to be frequent and it has to hash
to a frequent bucket!

Items 1…N

Basket 1: {1,2,3}
Pairs: {1,2} {1,3} {2,3}
Basket 2: {1,2,4}
Pairs: {1,2} {1,4} {2,4}

Buckets 1…B
3             1         2
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¡ Last time: Finding frequent pairs
¡ Further improvement: PCY
§ Pass 1:

§ Count exact frequency of each item:
§ Take pairs of items {i,j}, hash them into B buckets and 

count of the number of pairs that hashed to each bucket:

§ Pass 2:
§ For a pair {i,j} to be a candidate for 

a frequent pair, its singletons have 
to be frequent and its  has to hash
to a frequent bucket!

Items 1…N

Basket 1: {1,2,3}
Pairs: {1,2} {1,3} {2,3}
Basket 2: {1,2,4}
Pairs: {1,2} {1,4} {2,4}

Buckets 1…B
3             1         2

Previous lecture: A-priori
Main idea: Candidates
Instead of keeping a count of each pair, only keep a count  for 
candidate pairs!

Today’s lecture: Find pairs of similar docs
Main idea: Candidates
-- Pass 1: Take documents and hash them to buckets such that 
documents that are similar hash to the same bucket
-- Pass 2: Only compare documents that are candidates 
(i.e., they hashed to a same bucket)
Benefits: Instead of N2 comparisons, we need O(N) 
comparisons to find similar documents
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¡ Goal: Find near-neighbors in high-dim. space
§ We formally define “near neighbors” as 

points that are a “small distance” apart
¡ For each application, we first need to define 

what “distance” means
¡ Today: Jaccard distance (/similarity)
§ The Jaccard Similarity/Distance of two sets is the size of 

their intersection / the size of their union:
§ sim(C1, C2) = |C1ÇC2|/|C1ÈC2|
§ d(C1, C2) = 1 - |C1ÇC2|/|C1ÈC2|

3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8

LSH 13



¡ Goal: Given a large number (N in the millions or 
billions) of text documents, find pairs that are 
“near duplicates”

¡ Applications:
§ Mirror websites, or approximate mirrors

§ Don’t want to show both in a search
§ Similar news articles at many news sites

§ Cluster articles by “same story”
¡ Problems:

§ Many small pieces of one document can appear 
out of order in another

§ Too many documents to compare all pairs
§ Documents are so large or so many that they cannot 

fit in main memory
LSH 14



1. Shingling: Convert documents to sets

2. Minhashing: Convert large sets to short 
signatures, while preserving similarity

3. Locality-sensitive hashing: Focus on 
pairs of signatures likely to be from 
similar documents

§ Candidate pairs!
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ShinglingDocument

The set
of strings
of length k
that appear
in the doc-
ument

Min 
Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity
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Step 1: Shingling: Convert documents to sets

ShinglingDocument

The set
of strings
of length k
that appear
in the document



¡ Step 1: Shingling: Convert documents to sets

¡ Simple approaches:
§ Document = set of words appearing in document
§ Document = set of “important” words
§ Don’t work well for this application. Why?

¡ Need to account for ordering of words!
¡ A different way: Shingles (aka n-grams)!
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¡ A k-shingle (or k-gram) for a document is a 
sequence of k tokens that appears in the doc
§ Tokens can be characters, words or something 

else, depending on the application
§ Assume tokens = characters for examples

¡ Example: k=2; document D1= abcab
Set of 2-shingles: S(D1)={ab, bc, ca}
§ Option: Shingles as a bag (multiset), count ab

twice: S’(D1)={ab, bc, ca, ab}
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¡ To compress long shingles, we can hash them 
to (say) 4 bytes

¡ Represent a doc by the set of hash values 
of its k-shingles
§ Idea: Two documents could (rarely) appear to have 

shingles in common, when in fact only the hash-
values were shared

¡ Example: k=2; document D1= abcab
Set of 2-shingles: S(D1)={ab, bc, ca}
Hash the shingles: h(D1)={1, 5, 7}
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¡ Documents that have lots of shingles in 
common have similar text, even if the text 
appears in different order

¡ Caveat: You must pick k large enough, or most 
documents will have most shingles
§ k = 5 is OK for short documents
§ k = 10 is better for long documents
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¡ Document D1 = set of k-shingles C1=S(D1)
¡ Equivalently, each document is a 

0/1 vector in the space of k-shingles
§ Each unique shingle is a dimension
§ Vectors are very sparse

¡ A natural similarity measure is the 
Jaccard similarity:

Sim(D1, D2) = |C1ÇC2|/|C1ÈC2|
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¡ Many similarity problems can be 
formalized as finding subsets that 
have significant intersection

¡ Encode sets using 0/1 (bit, boolean) vectors 
§ One dimension per element in the universal set

¡ Interpret set intersection as bitwise AND, and 
set union as bitwise OR

¡ Example: C1 = 10111; C2 = 10011
§ Size of intersection = 3; size of union = 4, 

Jaccard similarity (not distance) = 3/4
§ d(C1,C2) = 1 – (Jaccard similarity) = 1/4
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¡ Rows = elements (shingles)
¡ Columns = sets (documents)
§ 1 in row e and column s if and only 

if e is a member of s
§ Column similarity is the Jaccard 

similarity of the corresponding 
sets (rows with value 1)

§ Typical matrix is sparse!
¡ Each document is a column:

§ Example: sim(C1 ,C2) = ?
§ Size of intersection = 3; size of union = 6, 

Jaccard similarity (not distance) = 3/6
§ d(C1,C2) = 1 – (Jaccard similarity) = 3/6

0101

0111

1001

1000

1010
1011

0111 
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¡ Suppose we need to find near-duplicate
documents among N=1 million documents

¡ Naïvely, we’d have to compute pairwise 
Jaccard similarites for every pair of docs
§ i.e, N(N-1)/2 ≈ 5*1011 comparisons
§ At 105 secs/day and 106 comparisons/sec, 

it would take 5 days

¡ For N = 10 million, it takes more than a year…
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Step 2: Minhashing: Convert large sets to 
short signatures, while preserving similarity

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

MinHash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity



¡ So far:
§ Documents ® Sets of shingles
§ Represent sets as boolean vectors in a matrix

¡ Next Goal: Find similar columns, Small signatures
¡ Approach:

§ 1) Signatures of columns: small summaries of columns
§ 2) Examine pairs of signatures to find similar columns

§ Essential: Similarities of signatures & columns are related
§ 3) Optional: Check that columns with similar signatures 

are really similar
¡ Warnings:

§ Comparing all pairs may take too much time: Job for LSH
§ These methods can produce false negatives, and even false 

positives (if the optional check is not made)
LSH 27



¡ Key idea: “hash” each column C to a small 
signature H(C), such that:
§ (1) H(C) is small enough that the signature fits in RAM
§ (2) sim(C1, C2) is the same as the “similarity” of 

signatures H(C1) and H(C2)
¡ Goal: Find a hash function H(·) such that:

§ if sim(C1,C2) is high, then with high prob. H(C1) = H(C2)
§ if sim(C1,C2) is low, then with high prob. H(C1) ≠ H(C2)

¡ Hash documents into buckets, and expect that 
“most” pairs of near duplicate docs hash into the 
same bucket!
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¡ Goal: Find a hash function H(·) such that:
§ if sim(C1,C2) is high, then with high prob. H(C1) = H(C2)
§ if sim(C1,C2) is low, then with high prob. H(C1) ≠ H(C2)

¡ Clearly, the hash function depends on 
the similarity metric:
§ Not all similarity metrics have a suitable 

hash function
¡ There is a suitable hash function for 

Jaccard similarity: Min-hashing
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¡ Key Idea:
If we pick a “winner”, say x, among all elements of  VÈW in   

a uniformly random manner,  then: 
Prob[Element x is the winner] = 1 /|VÈW| 

and
Prob[x Î V Ç W] = |VÇW|/|VÈW|= sim(V, W)…Eq.(1)

Þ If we can repeat the experiment many times and be able 
to detect and count the cases of “winner Î V Ç W”, we 
can estimate Prob[x Î V Ç W],  and thus sim(V, W) (per 
Eq.(1): 
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Now, let’s use the following way to pick a winner within VÈW in a 
uniformly random manner :
¡After randomly permute the ordering of  all elements in VÈW,   assign 
a unique value to each element according to its order in the resultant 
permutation, e.g.  “1” to the 1st element, “2” to the 2nd element, and so 
on …………………………………(*)
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Now, let’s use the following way to pick a winner within VÈW in a 
uniformly random manner :
¡After randomly permute the ordering of  all elements in VÈW,   assign 
a unique value to each element according to its order in the resultant 
permutation, e.g.  “1” to the 1st element, “2” to the 2nd element, and so 
on …………………………………(*)

LSH 32

a:=7
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f:=3 g:=2

b:=5

h:=4

d:=1

V W



Now, let’s use the following way to pick a winner within VÈW in a 
uniformly random manner :
¡After randomly permute the ordering of  all elements in VÈW,   assign 
a unique value to each element according to its order in the resultant 
permutation, e.g.  “1” to the 1st element, “2” to the 2nd element, and so 
on …………………………………(*)
¡Among all elements in VÈW,  we declare the element, say x,  with the 
smallest assigned value (according to (*)), the winner of VÈW.
¡Similarly,  within set V,  we declare the element with the smallest assigned value 
(according to (*)), the winner of set V.
¡Similarly,  within set W,  we declare the element with the smallest assigned value 
(according to (*)), the winner of set W.
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e:=6 c:=8

f:=3 g:=2

b:=5

h:=4

d:=1

V W Winner of VÈW is d

Winner of V is g Winner of W is also d



¡ Now,  try another randomly permutation, followed by value 
assignment ;  

¡ This time,  say, e becomes the element with the smallest value 
assigned and thus the winner!
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a:=2
e:=1 c:=8

f:=5 g:=6

b:=3

h:=4

d:=7

V W

Notice that  e = Winner of VÈW = Winner of V  = Winner of W 

(The winning element x  ÎV ÇW) iff  (The winner of  V is also the winner of W)



Observe that: 
(The winning element x  Î V Ç W) iff (The winner of set V is also the winner of set W) …..(**)

¡Since the event of  the R.H.S. of (**) is readily observable,  we can use this condition to 
determine whether x,  the winning element  of the current permutation belongs to V Ç W .

¡By repeating the experiment in (*) using  different random permutations  and count the 
number of times the event specified in the R.H.S.  of (**) is observed,

we can estimate Prob[x Î V Ç W] (which is =  sim(V, W)) according to Eq.(1) as follows:

LSH 35/* ),( of est.an  as * /) / (return  :8
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¡ Now,  try another randomly permutation, followed by value 
assignment ;  

¡ This time,  say, e becomes the element with the smallest value 
assigned and thus the winner!
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a:=11
e:=1

m:=7

f:=8 g:=6

y:=15

h:=9

d:=3

V W

Notice that  e = Winner of VÈW = Winner of V  = Winner of W 

(The winning element x  ÎV ÇW) iff  (The winner of  V is also the winner of W)

j:=4
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Signature matrix M 
(stores the row #’s of winning element 

AFTER permutation.) 

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

Element a, i.e. 2nd row after the permutation, is the winner in Col. 1 because 
it is the first to map to  1 ; Element e can’t be the winner for  Col. 1 because e does 
NOT appear in doc. represented by Col. 1.

4th row after the permutation, 
i.e. element a,  is the first to 
map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation p

Note: An alternative way 
(equivalent) is to 
store row #’s
of the winning
element
BEFORE the permutation

1 5 1 5
2 3 1 3
6 4 6 4

a
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c

f
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¡ Imagine the rows of the boolean matrix permuted under random 
permutation p

¡ Define a “hash” function hp(C) = the row number of the first row
(according to permuted order p) in which column C has a value of 
1:
¡ We skip rows with a zero because it means the corresponding element is 

NOT a member of  Col. C anyway ! 

Define hp (C) = row # (after permutation p) of winner of Col. C

Alternatively, we can also use:
h’p (C) = row # (before permutation p) of winner of Col. C

¡ Use several (e.g., 100) independent hash (permutation) functions 
to create a signature of a column.
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Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation p

Note: Another (equivalent) way is to 
store row indexes
before permutation

1 5 1 5
2 3 1 3
6 4 6 4

¡ Prob[hp(C1) = hp(C2)] is the same as sim(D1, D2)



¡ Given cols C1 and C2, there are 4 types of rows:
C1 C2

Type  A 1 1
B 1 0
C 0 1
D 0 0

§ a = # rows of type A, etc.
By definition of Jaccard Similarity: sim(C1, C2) = a/(a +b +c)......Eq.(2)

Now, after random shuffling of rows, look down the cols of C1 and C2
row-by-row until we see at least one 1: (i.e. a winner is detected)

¡ If it’s a type-A row => same winner for C1 and C2 , i.e. h(C1) = h(C2), 
¡ If a type-B or type-C row, then different winners for C1 and C2
BUT: Pr[Same winner for C1 and C2]

= Pr [h(C1) = h(C2)] = Pr[h’(C1) = h’(C2)] 
= Pr[Reaching a type-A row before a type-B or type-C row]  
=  a/(a +b +c) /* due to the # of type-A,B,C, rows in C1 and C2 */ 
= sim(C1, C2) /* by Eq.(2)  */  
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As a result, we have: 
Pr[winner of C1 = winner of C2] = 
Pr[hp(C1) = hp(C2)] = sim(C1, C2)………………………… Eq.(3)

¡ We will use multiple hash functions to realize different 
random permutations among the elements within the 
Columns 

¡ Define the similarity of two signatures to be the 
fraction of the hash functions in which they agree

¡ Per Eq.(3),  the similarity of columns (2 sets) is the 
same as the expected similarity of their signatures
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¡ Pick K=100 random permutations of the rows
¡ Think of sig(C) as a column vector

¡ sig(C)[i] = according to the i-th permutation, the 
index of the first row that has a 1 in column C

Note: The sketch (signature) of document C is 
small -- ~100 bytes!

¡ We achieved our goal! We “compressed” 
long bit vectors into short signatures
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¡ Permuting rows even once is prohibitive
¡ Row hashing!

§ Pick K = 100 hash functions ki

§ Ordering under ki gives a random row permutation!
¡ One-pass implementation

§ For each column C and hash-func. ki keep a “slot” for 
the min-hash value

§ Initialize all sig(C)[i] = ¥
§ Scan rows looking for 1s

§ Suppose row j has 1 in column C
§ Then for each ki :

§ If ki(j) < sig(C)[i], then sig(C)[i] ¬ ki(j)

How to pick a random
hash function h(x)?
Universal hashing:
ha,b(x)=((a·x+b) mod p) mod N
where:
a,b … random integers
p … prime number (p > N)
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Step 3: Locality-sensitive hashing:
Focus on pairs of signatures likely to be from 
similar documents

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

MinHash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity



¡ Goal: Find documents with Jaccard similarity at 
least s (for some similarity threshold, e.g., s=0.8)

¡ LSH – General idea: Use a function f(x,y) that 
tells whether x and y is a candidate pair: a pair 
of elements whose similarity must be evaluated

¡ For minhash matrices: 
§ Hash columns of signature matrix M to many buckets
§ Each pair of documents that hashes into the 

same bucket is a candidate pair

1212

1412

2121

LSH 45



¡ Pick a similarity threshold s (0 < s < 1)

¡ Columns x and y of M are a candidate pair if 
their signatures agree on at least fraction s of 
their rows: 
M (i, x) = M (i, y) for at least frac. s values of i
§ We expect documents x and y to have the same 

(Jaccard) similarity as is the similarity of their 
signatures

1212

1412

2121
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¡ Big idea: Hash columns of 
signature matrix M several times

¡ Arrange that (only) similar columns are 
likely to hash to the same bucket, with 
high probability

¡ Candidate pairs are those that hash to 
the same bucket

1212

1412

2121
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Signature matrix  M

r rows
per band

b bands

One
signature

1212

1412

2121
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¡ Divide matrix M into b bands of r rows

¡ For each band, hash its portion of each 
column to a hash table with k buckets
§ Make k as large as possible

¡ Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band

¡ Tune b and r to catch most similar pairs, 
but few non-similar pairs
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Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical 
(candidate pair)

Columns 6 and 7 are
surely different.



¡ There are enough buckets that columns are 
unlikely to hash to the same bucket unless 
they are identical in a particular band

¡ Hereafter, we assume that “same bucket” 
means “identical in that band”

¡ Assumption needed only to simplify analysis, 
not for correctness of algorithm
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Assume the following case:
¡ Suppose 100,000 columns of M (100k docs)
¡ Signatures of 100 integers (rows)
¡ Therefore, signatures take 40Mb
¡ Choose b = 20 bands of r = 5 integers/band

¡ Goal: Find pairs of documents that 
are at least s = 0.8 similar

1212

1412

2121
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¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.8

§ Since sim(C1, C2) ³ s, we want C1, C2 to be a candidate 
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

¡ Probability C1, C2 identical in one particular band: 
(0.8)5 = 0.328

¡ Probability C1, C2 are not similar in all of the 20 
bands: (1-0.328)20 = 0.00035 
§ i.e., about 1/3000th of the 80%-similar column pairs 

are false negatives (we miss them)
§ We would find 99.965% pairs of truly similar documents

1212

1412

2121
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¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.3

§ Since sim(C1, C2) < s we want C1, C2 to hash to NO 
common buckets (all bands should be different)

¡ Probability C1, C2 identical in one particular band: 
(0.3)5 = 0.00243

¡ Probability C1, C2 identical in at least 1 of 20 
bands: 1 - (1 - 0.00243)20 = 0.0474
§ In other words, approximately 4.74% pairs of docs 

with similarity 0.3 end up becoming candidate pairs
§ They are false positives since we will have to examine them 

(they are candidate pairs) but then it will turn out their 
similarity is below threshold s

1212

1412

2121
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¡ Pick:
§ the number of minhashes (rows of M) 
§ the number of bands b, and 
§ the number of rows r per band
to balance false positives/negatives

¡ Example: if we had only 15 bands of 5 
rows, the number of false positives would 
go down, but the number of false negatives 
would go up

1212

1412

2121
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Similarity s =sim(C1, C2) of two sets

Probability
of sharing
a bucket

Si
m

ila
rit

y 
th

re
sh

ol
d 
t

No chance
If s < t

Probability = 1 
if s > t
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Remember:
Probability of
equal hash-values
= similarity

Similarity s =sim(C1, C2) of two sets

Probability
of sharing
a bucket



¡ Columns C1 and C2 have similarity s
¡ Pick any band (r rows)
§ Prob. that all rows in band equal = sr

§ Prob. that some row in band unequal = 1 - sr

¡ Prob. that no band identical  = (1 - sr)b

¡ Prob. that at least 1 band identical =                  
1 - (1 - sr)b
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s r 

All rows
of a band
are equal

1 -

Some row
of a band
unequal

( )b 

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r 

Similarity s=sim(C1, C2) of two sets

Probability
of sharing
a bucket
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Similarity
y = 1 - (1 - s r)b

Given a fixed
threshold t.

We want to 
choose r and b
such that the 
P(Candidate 
pair) has a 
“step” right 
around t.



¡ Similarity level s
¡ Prob. that at least 1 band is identical:

s 1-(1-s r)b
.2 .006
.3 .047
.4 .186
.5 .470
.6 .802
.7 .975
.8 .9996
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¡ Picking r and b to get the best S-curve
§ 50 hash-functions (r=5, b=10)
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¡ Tune M, b, r to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures

¡ Check in main memory that candidate pairs
really do have similar signatures

¡ Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar documents
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¡ Shingling: Convert documents to sets
§ We used hashing to assign each shingle an ID

¡ Min-hashing: Convert large sets to short signatures, 
while preserving similarity
§ We used similarity preserving hashing to generate signatures 

with property Pr[hp(C1) = hp(C2)] = sim(C1, C2)
§ We used hashing to get around generating random 

permutations
¡ Locality-sensitive hashing: Focus on pairs of signatures 

likely to be from similar documents
§ We used hashing to find candidate pairs of similarity ³ s
§ Notice that MinHash is only good for constructing LSH under 

the Jaccard similarity ; 
§ Other Hash functions exist for LSH under for other 

similarity metrics, e.g. cosine similarity or hamming 
distance etc.
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¡ MinHash works for Jaccard Similiarity [ d(x,y) = 1 – sim(x,y) ]
¡ Different LSH methods for other distance metrics:

§ Cosine distance,
§ Euclidean distance etc
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Points: x, y, … Hash 
func.

Signatures: short 
integer signatures that 
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of 
signatures that 
we need to test 
for similarity

Design a family of hash functions s.t.
If d(x,y) < d1, then prob. that h(x) = h(y) is high, e.g. at least p1 

AND 
If d(x,y) > d2, then prob. that h(x) = h(y) is low, e.g. at most p2

Amplify the hash  
family to get the 
“S” curve using 

AND and OR 
constructions

The design of the hash function h( ) will depend on the choice of 
distance metric,  d(x,y) = 1 – sim(x,y)



¡ Suppose we have a space S of points with 
a distance measure d

¡ A family H of hash functions is said to be 
(d1, d2, p1, p2)-sensitive if for any x and y in S:

1. If d(x, y) < d1, then the probability over all hÎ H, 
that h(x) = h(y) is at least p1

2. If d(x, y) > d2, then the probability over all hÎ H, 
that h(x) = h(y) is at most p2
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Pr
[h

(x
) =

 h
(y

)]

d(x,y) (= 1-sim(x,y))

d1 d2

p2

p1

High
probability;
at least p1

Low
probability;
at most p2
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¡ The S-curve is where the “magic” happens
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Similarity s of two sets
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Remember:
Probability of
equal hash-values
= similarity

This is what 1 band & 1 row gives you
Pr[hp(C1) = hp(C2)] = sim(D1, D2)

No chance
if s < t

Probability 
~ 1 if s > t

This is what we want!
How to get a step-function?

By choosing r rows and b bands!

Th
re

sh
ol

d 
t

Similarity s of two sets

Pr
ob

ab
ilit

y 
of

 s
ha

rin
g

≥ 
1

bu
ck

et



¡ The S-curve is where the “magic” happens
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Distance d of two sets
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Remember:
Probability of

equal hash-values
= similarity   

= 1-distance

This is what 1 band and 1 row gives you
Pr[hp(C1) = hp(C2)] = sim(D1, D2)

= 1 - distance(D1, D2)

No chance
If d > t

Probability 
~ 1 if 
d < t

This is what we want!
How to get a step-function?

By choosing r rows and b bands !
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Pr
[h

(x
) =

 h
(y

)]

Distance d(x,y)

d1 d2

p2

p1

Small distance,
high probability

Large distance,
low probability
of hashing to 
the same value
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Distance
threshold t



¡

2/16/2372Jure Leskovec, Stanford CS246: Mining Massive Datasets

A

B

A×B
ǁBǁ

- Has range -1…1 for 
general vectors
- Range 0..1 for 
non-negative vectors
(angles up to 90°)



¡ For cosine similarity = cos q = (A·B / ǁAǁǁBǁ)
¡ cosine distance d(A, B) = q/180
¡ There is a technique called 

Random Hyperplanes
§ Technique similar to Minhashing

¡ Random Hyperplanes is a 
(d1, d2, (1-d1/180), (1-d2/180))-sensitive family 
for any d1 and d2

¡ Reminder: (d1, d2, p1, p2)-sensitive
1. If d(x,y) < d1, then prob. that h(x) = h(y) is at least p1

2. If d(x,y) > d2, then prob. that h(x) = h(y) is at most p2
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A

BA·B
ǁBǁ

θ ∈[0,180]



LSH 74

Prob[Red case] = θ / 180

So: P[h(x)=h(y)] = 1- θ/180 = 1-d(x,y)

¡ Pick a random vector v, which determines a hash function hv
with two buckets s.t.:

hv(x) = +1 if v×x ³ 0;  = -1 if v×x < 0
v’

v

Look in the
plane of 
x and y.

Hyperplane
normal to v.

Hyperplane
normal to v’



¡ Pick some number of random vectors v, and 
hash your data for each vector

¡ The result is a signature (sketch) of 
+1’s and –1’s for each data point: x, y, …

¡ Can be used for LSH like we used the 
Minhash signatures for Jaccard distance

¡ Amplify using AND/OR constructions
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¡ Expensive to pick a random vector in M
dimensions for large M
§ Would have to generate M random numbers

¡ A more efficient (but approximated) approach
§ It is “close enough” to consider only vectors v

consisting of +1 and –1 components
§ Why? Assuming data is random, then vectors of +/-1 cover 

the entire space evenly (and does not bias in any way)
§ This only gives an APPROXIMATED result, but not an exact one !!

2/16/2376Jure Leskovec, Stanford CS246: Mining Massive Datasets



¡ Simple idea: Hash functions correspond to lines

¡ Partition the line into buckets of size a

¡ Hash each point to the bucket containing its 
projection onto the line

¡ Nearby points are always close; 
distant points are rarely in same bucket
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¡ “Lucky” case:
§ Points that are close 

hash in the same bucket
§ Distant points end up in 

different buckets

¡ Two “unlucky cases:
§ Top: unlucky 

quantization
§ Bottom: unlucky 

projection
78
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Bucket
width a

Randomly
chosen line

Points at
distance d If d << a, then

the chance the
points are in the
same bucket is
at least 1 – d/a.
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¡ For example, If points are distance  d < a/2, 
the probability they are in same bucket  ≥ 1- d/a = ½



Bucket
width a

Points at
distance d

θ

d cos θ

If d >> a, θ must
be very close to 90o
for there to be
any chance points
go to the same
bucket.
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Randomly
chosen line

¡ For example, if points are distance d > 2a apart, 
then  they can be in the same bucket only if  d cos θ ≤ a
=> cos θ ≤ ½ 
So, for 60 < θ < 90, i.e., at most 1/3 probability



¡ If points are distance  d < a/2, prob. 
they are in same bucket  ≥ 1- d/a = ½

¡ If points are distance d > 2a apart, then  they 
can be in the same bucket only if  d cos θ ≤ a
§ cos θ ≤ ½ 
§ 60 < θ < 90, i.e., at most 1/3 probability

¡ Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of 
hash functions for any a

¡ Amplify using AND-OR cascades
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