IERG4300 Web-Scale Information Analytics

Finding Similar Items and Locality Sensitive Hash (LSH)

Prof. Wing C. Lau
Department of Information Engineering wclau@ie.cuhk.edu.hk

Acknowledgements

- Many slides used in this chapter are adapted from:
- CS246 Mining Massive Data-sets, by Jure Leskovec, Stanford University.
- COMS 6998-12 Dealing with Massive Data, by Sergei Vassilvitskii, (Yahoo! Research), Columbia University
All copyrights belong to the original author of the material.

Scene Completion Problem

[Hays and Efros, SIGGRAPH 2007]
Scene Completion Problem

Scene Completion Problem

10 nearest neighbors from a collection of 20,000 images

Scene Completion Problem

10 nearest neighbors from a collection of 2 million images

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
- Find near-neighbors in high-dimensional space
- Examples:
- Web Pages with similar words
- For duplicate detection, classification by topic
- Customers who purchased similar products
- Products with similar customer sets
- Images with similar features
- Users who visited the similar websites

Relation to Previous Topic

- Last time: Finding frequent pairs

N ... number of distinct items
K ... number of items with support $\geq s$

A-priori:
First pass: Find frequent singletons For a pair to be a candidate for a frequent pair, its singletons have to be frequent!

Second pass:

Count only candidate pairs!

Relation to Previous Topic

- Last time: Finding frequent pairs
- Further improvement: PCY
- Pass 1:
- Count exact frequency of each item:

- Take pairs of items $\{i, j\}$, hash them into B buckets and count of the number of pairs that hashed to each bucket:

Buckets 1...B

Relation to Previous Topic

- Last time: Finding frequent pairs
- Further improvement: PCY
- Pass 1:
- Count exact frequency of each item:

- Take pairs of items $\{i, j\}$, hash them into B buckets and count of the number of pairs that hashed to each bucket:
- Pass 2:
- For a pair $\{i, j\}$ to be a candidate for a frequent pair, its singletons have to be frequent and it has to hash to a frequent bucket!

Buckets 1...B

Relation to Previous Lecture

- Las
- Fu Previous lecture: A-priori
- Main idea: Candidates

Instead of keeping a count of each pair, only keep a count for candidate pairs!
Today's lecture: Find pairs of similar docs
Main idea: Candidates
-- Pass 1: Take documents and hash them to buckets such that documents that are similar hash to the same bucket
-- Pass 2: Only compare documents that are candidates
(i.e., they hashed to a same bucket)

Benefits: Instead of \mathbf{N}^{2} comparisons, we need $\mathbf{O}(\mathbf{N})$ comparisons to find similar documents

Finding Similar Items

Distance Measures

- Goal: Find near-neighbors in high-dim. space
- We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Today: Jaccard distance (/similarity)
- The Jaccard Similarity/Distance of two sets is the size of their intersection / the size of their union:
- $\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$
- $d\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=1-\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$

[^0]
Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates"
- Applications:
- Mirror websites, or approximate mirrors
- Don't want to show both in a search
- Similar news articles at many news sites
" Cluster articles by "same story"
- Problems:
- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets
2. Minhashing: Convert large sets to short signatures, while preserving similarity
3. Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents

- Candidate pairs!

The Big Picture

The set
of strings
of length k
that appear
in the document

Shingling

Shingling:

Documents as High-Dim Data

- Step 1: Shingling: Convert documents to sets
- Simple approaches:
- Document = set of words appearing in document
- Document = set of "important" words
- Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles (aka n-grams)!

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
- Tokens can be characters, words or something else, depending on the application
- Assume tokens = characters for examples
- Example: k=2; document $\mathrm{D}_{1}=\mathrm{abcab}$ Set of 2-shingles: $S\left(D_{1}\right)=\{a b, b c, c a\}$
- Option: Shingles as a bag (multiset), count ab twice: $S^{\prime}\left(D_{1}\right)=\{a b, b c, c a, a b\}$

Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a doc by the set of hash values of its k-shingles
- Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hashvalues were shared
- Example: $\mathrm{k}=2$; document $\mathrm{D}_{1}=\mathrm{abcab}$

Set of 2-shingles: $S\left(D_{1}\right)=\{a b, b c, c a\}$
Hash the shingles: $h\left(D_{1}\right)=\{1,5,7\}$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick \boldsymbol{k} large enough, or most documents will have most shingles
- $\boldsymbol{k}=5$ is OK for short documents
- $\boldsymbol{k}=10$ is better for long documents

Similarity Metric for Shingles

- Document $D_{1}=$ set of k-shingles $C_{1}=S\left(D_{1}\right)$
- Equivalently, each document is a $0 / 1$ vector in the space of k-shingles
- Each unique shingle is a dimension
- Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$
\operatorname{Sim}\left(D_{1}, D_{2}\right)=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|
$$

Encoding Sets as Bit Vectors

- Many similarity problems can be formalized as finding subsets that
 have significant intersection
- Encode sets using 0/1 (bit, boolean) vectors
- One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- Example: $\mathrm{C}_{1}=10111 ; \mathrm{C}_{2}=10011$
- Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) $=3 / 4$
- $d\left(C_{1}, C_{2}\right)=1-($ Jaccard similarity $)=1 / 4$

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
- 1 in row \boldsymbol{e} and column \boldsymbol{s} if and only if \boldsymbol{e} is a member of \boldsymbol{s}
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!
- Each document is a column:
- Example: $\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=$?
- Size of intersection $=3$; size of union $=6$, Jaccard similarity (not distance) $=3 / 6$
- $d\left(C_{1}, C_{2}\right)=1$ - (Jaccard similarity $)=3 / 6$

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among $\mathrm{N}=1$ million documents
- Naïvely, we'd have to compute pairwise Jaccard similarites for every pair of docs
- i.e, $N(N-1) / 2 \approx 5^{*} 10^{11}$ comparisons
- At 10^{5} secs/day and 10^{6} comparisons/sec, it would take 5 days
- For $\mathrm{N}=10$ million, it takes more than a year...

Minhashing:

Outline: Finding Similar Columns

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures
- Approach:
- 1) Signatures of columns: small summaries of columns
- 2) Examine pairs of signatures to find similar columns
- Essential: Similarities of signatures \& columns are related
- 3) Optional: Check that columns with similar signatures are really similar
- Warnings:
- Comparing all pairs may take too much time: Job for LSH
- These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures)

- Key idea: "hash" each column C to a small signature $H(C)$, such that:
- (1) $H(C)$ is small enough that the signature fits in RAM
- (2) $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $H\left(C_{1}\right)$ and $H\left(C_{2}\right)$
- Goal: Find a hash function $H(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $H\left(C_{1}\right)=H\left(C_{2}\right)$
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $H\left(C_{1}\right) \neq H\left(C_{2}\right)$
- Hash documents into buckets, and expect that "most" pairs of near duplicate docs hash into the same bucket!
- Goal: Find a hash function $H(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $H\left(C_{1}\right)=H\left(C_{2}\right)$
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $H\left(C_{1}\right) \neq H\left(C_{2}\right)$
- Clearly, the hash function depends on the similarity metric:
- Not all similarity metrics have a suitable hash function
- There is a suitable hash function for Jaccard similarity: Min-hashing

Estimating $\operatorname{sim}(V, W)=|V \cap W| /|V \cup W|$

- Key Idea:

If we pick a "winner", say x, among all elements of $V \cup W$ in a uniformly random manner, then: $\operatorname{Prob}[E l e m e n t x$ is the winner] $=1 /|V \cup W|$ and

$$
\operatorname{Prob}[x \in V \cap W]=|V \cap W| /|V \cup W|=\operatorname{sim}(V, W) . . . E q .(1)
$$

\Rightarrow If we can repeat the experiment many times and be able to detect and count the cases of "winner $\in V \cap W$ ", we can estimate $\operatorname{Prob}[x \in V \cap W]$, and thus $\operatorname{sim}(V, W)$ (per Eq.(1):

```
Algorithm 1 Similarity(V,W)
    1: counter }\leftarrow
    2: for }i=1\mathrm{ to }100\mathrm{ do
    3: Pick a random element }x\inV\cup
    4: if }x\inV\wedgex\inW\mathrm{ then
    5: counter }\leftarrow\mathrm{ counter +1
    6: return counter/100
```


Estimating $\operatorname{sim}(V, W)=|V \cap W| /|V \cup W|$

Now, let's use the following way to pick a winner within $V \cup W$ in a uniformly random manner :
-After randomly permute the ordering of all elements in $V \cup W$, assign a unique value to each element according to its order in the resultant permutation, e.g. " 1 " to the $1^{\text {st }}$ element, " 2 " to the $2^{\text {nd }}$ element, and so on

Estimating $\operatorname{sim}(V, W)=|V \cap W| /|V \cup W|$

Now, let's use the following way to pick a winner within $V \cup W$ in a uniformly random manner :
-After randomly permute the ordering of all elements in $V \cup W$, assign a unique value to each element according to its order in the resultant permutation, e.g. " 1 " to the $1^{\text {st }}$ element, " 2 " to the $2^{\text {nd }}$ element, and so on

Estimating $\operatorname{sim}(V, W)=|V \cap W| /|V \cup W|$

Now, let's use the following way to pick a winner within $V \cup W$ in a uniformly random manner :
-After randomly permute the ordering of all elements in $V \cup W$, assign a unique value to each element according to its order in the resultant permutation, e.g. " 1 " to the $1^{\text {st }}$ element, " 2 " to the $2^{\text {nd }}$ element, and so on (*)
-Among all elements in $V \cup W$, we declare the element, say x, with the smallest assigned value (according to $\left(^{*}\right)$), the winner of $V \cup W$.
-Similarly, within set V, we declare the element with the smallest assigned value (according to $\left({ }^{*}\right)$), the winner of set V.
-Similarly, within set W, we declare the element with the smallest assigned value (according to $\left(^{*}\right)$), the winner of set W.

Estimating $\operatorname{sim}(V, W)=|V \cap W| /|V \cup W|$

- Now, try another randomly permutation, followed by value assignment ;
- This time, say, e becomes the element with the smallest value assigned and thus the winner!

Notice that e $=$ Winner of $V \cup W=$ Winner of $V=$ Winner of W
(The winning element $x \in \mathrm{~V} \cap \mathrm{~W}$) iff (The winner of V is also the winner of W)

Estimating $\operatorname{sim}(\mathrm{V}, \mathrm{W})=|\mathrm{V} \cap \mathrm{W}| /|\mathrm{V} \cup \mathrm{W}|$ (cont'd)

Observe that:

(The winning element $x \in \mathrm{~V} \cap \mathrm{~W}$) iff (The winner of set V is also the winner of set W)
-Since the event of the R.H.S. of (${ }^{* *}$) is readily observable, we can use this condition to determine whether x , the winning element of the current permutation belongs to $\mathrm{V} \cap \mathrm{W}$.
"By repeating the experiment in (*) using different random permutations and count the number of times the event specified in the R.H.S. of $\left(^{* *}\right)$ is observed, we can estimate $\operatorname{Prob}[\mathrm{x} \in \mathrm{V} \cap \mathrm{W}]$ (which is $=\operatorname{sim}(\mathrm{V}, \mathrm{W})$) according to Eq.(1) as follows:

Algorithm 2 Similarity(V,W)

1: counter $\leftarrow 0$
2 : for $i=0$ to N do

3: Randomly permute the ordering of elements in $V \bigcup W$
4: Assign a value to each element according to the resultant order
5: if (smallest value within $V==$ smallest value within W)
6: \quad counter \leftarrow counter +1
7: end / * of for*/
8: return $($ counter $/ N) / *$ as an est. of $\operatorname{sim}(V, W) * /$

Estimating $\operatorname{sim}(V, W)=|V \cap W| /|V \cup W|$

- Now, try another randomly permutation, followed by value assignment ;
- This time, say, e becomes the element with the smallest value assigned and thus the winner!

Notice that e $=$ Winner of $V \cup W=$ Winner of $V=$ Winner of W
(The winning element $x \in \mathrm{~V} \cap \mathrm{~W}$) iff (The winner of V is also the winner of W)

Note: An alternative way
(equivalent) is to
store row \#'s
of the winning element

1	5	1	5
2	3	1	3
6	4	6	4

BEFORE the permutation Element a, i.e. $2^{\text {nd }}$ row after the permutation, is the winner in Col. 1 because it is the first to map to 1 ; Element e can't be the winner for Col. 1 because e does NOT appear in doc. represented by Col. 1.

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)=$ the row number of the first row (according to permuted order π) in which column C has a value of 1 :
- We skip rows with a zero because it means the corresponding element is NOT a member of Col. C anyway !

Define $h_{\pi}(C)=$ row $\#$ (after permutation π) of winner of Col. C
Alternatively, we can also use:
$h_{\pi}^{\prime}(C)=$ row $\#$ (before permutation π) of winner of Col. C

- Use several (e.g., 100) independent hash (permutation) functions to create a signature of a column.

Note: Another (equivalent) way is to Min-Hashing Example store row indexes before permutation

1	5	1	5
2	3	1	3
6	4	6	4

Permutation π Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

Similarities:

	$1-3$	$2-4$	$1-2$	$3-4$
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

$-\operatorname{Prob}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]$ is the same as $\operatorname{sim}\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)$

Alternative Derivation for

$\operatorname{Pr}\left[\right.$ Same winnerfor $\left.\mathrm{C}_{1} \& \mathrm{C}_{2}\right]=\operatorname{Pr}\left[h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$

- Given cols C_{1} and C_{2}, there are 4 types of rows:

Type A

C_{1}	C_{2}
$\mathbf{1}_{1}$	1
1	0
0	1
0	0

" $\mathbf{a}=\#$ rows of type A, etc.
By definition of Jaccard Similarity: $\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\mathrm{a} /(\mathrm{a}+\mathrm{b}+\mathrm{c})$......Eq.(2)
Now, after random shuffling of rows, look down the cols of C_{1} and C_{2} row-by-row until we see at least one 1: (i.e. a winner is detected)

- If it's a type-A row => same winner for C_{1} and C_{2}, i.e. $h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)$, - If a type- B or type- C row, then different winners for C_{1} and C_{2}

BUT: $\operatorname{Pr}\left[\right.$ Same winner for C_{1} and $\left.\mathrm{C}_{2}\right]$
$=\operatorname{Pr}\left[h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)\right]=\operatorname{Pr}\left[h^{\prime}\left(\mathrm{C}_{1}\right)=h^{\prime}\left(\mathrm{C}_{2}\right)\right]$
$=\operatorname{Pr[Reaching~a~type-A~row~before~a~type-B~or~type-C~row]~}$
$=\mathrm{a} /(\mathrm{a}+\mathrm{b}+\mathrm{c}) / *$ due to the \# of type-A, B, C, rows in C_{1} and C_{2} */
$=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right) / *$ by Eq.(2) */

Similarity for Signatures

As a result, we have:
$\operatorname{Pr}\left[\right.$ winner of $\mathrm{C}_{1}=$ winner of $\left.\mathrm{C}_{2}\right]=$
$\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right) \ldots . ~ E q .(3)$

- We will use multiple hash functions to realize different random permutations among the elements within the Columns
- Define the similarity of two signatures to be the fraction of the hash functions in which they agree
- Per Eq.(3), the similarity of columns (2 sets) is the same as the expected similarity of their signatures

MinHash Signatures

- Pick K=100 random permutations of the rows
- Think of $\operatorname{sig}(\mathbf{C})$ as a column vector
- $\operatorname{sig}(C)[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C Note: The sketch (signature) of document C is small -- ~100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
- Pick $\mathbf{K}=\mathbf{1 0 0}$ hash functions $\boldsymbol{k}_{\boldsymbol{i}}$
- Ordering under $\boldsymbol{k}_{\boldsymbol{i}}$ gives a random row permutation!
- One-pass implementation
" For each column \boldsymbol{C} and hash-func. $\boldsymbol{k}_{\boldsymbol{i}}$ keep a "slot" for the min-hash value
- Initialize all sig(C)[i] = ∞
- Scan rows looking for 1s
- Suppose row \boldsymbol{j} has 1 in column \boldsymbol{C}
- Then for each $\boldsymbol{k}_{\boldsymbol{i}}$:
- If $\boldsymbol{k}_{i}(j)<\operatorname{sig}(C)[i]$, then $\operatorname{sig}(C)[i] \leftarrow \boldsymbol{k}_{i}(j)$

How to pick a random hash function $\mathrm{h}(\mathrm{x})$? Universal hashing:
$h_{a, b}(x)=((a \cdot x+b) \bmod p) \bmod N$ where:
a,b ... random integers
p ... prime number ($\mathrm{p}>\mathrm{N}$)

Locality-sensitive hashing:

LSH: First Cut

2	1	4	1
1	2	1	2
2	1	2	1

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)
- LSH - General idea: Use a function $f(x, y)$ that tells whether \boldsymbol{x} and \boldsymbol{y} is a candidate pair: a pair of elements whose similarity must be evaluated
- For minhash matrices:
- Hash columns of signature matrix M to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair
- Pick a similarity threshold $s(0<s<1)$
- Columns \boldsymbol{x} and \boldsymbol{y} of \boldsymbol{M} are a candidate pair if their signatures agree on at least fraction s of their rows:
$\boldsymbol{M}(\boldsymbol{i}, \boldsymbol{x})=\boldsymbol{M}(\boldsymbol{i}, \boldsymbol{y})$ for at least frac. \boldsymbol{s} values of \boldsymbol{i}
- We expect documents \boldsymbol{x} and \boldsymbol{y} to have the same (Jaccard) similarity as is the similarity of their signatures

LSH for Minhash

2	1	4	1
1	2	1	2
2	1	2	1

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

\section*{Partition M into b Bands
 | 2 | 1 | 4 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 |}

Signature matrix M

Partition M into Bands

- Divide matrix \boldsymbol{M} into \boldsymbol{b} bands of \boldsymbol{r} rows
- For each band, hash its portion of each column to a hash table with \boldsymbol{k} buckets
- Make \boldsymbol{k} as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune \boldsymbol{b} and \boldsymbol{r} to catch most similar pairs, but few non-similar pairs

Hashing Bands

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case:

- Suppose 100,000 columns of \boldsymbol{M} (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40 Mb
- Choose $\boldsymbol{b}=20$ bands of $\boldsymbol{r}=5$ integers/band
- Goal: Find pairs of documents that are at least $\boldsymbol{s}=0.8$ similar

$\mathrm{C}_{1}, \mathrm{C}_{2}$ are 80% Similar

2	1	4	1
1	2	1	2
2	1	2	1

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.8$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right) \geq s$, we want C_{1}, C_{2} to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in one particular band: $(0.8)^{5}=0.328$
- Probability C_{1}, C_{2} are not similar in all of the 20 bands: $(1-0.328)^{20}=0.00035$
- i.e., about $1 / 3000$ th of the 80%-similar column pairs are false negatives (we miss them)
- We would find 99.965\% pairs of truly similar documents

$\mathrm{C}_{1}, \mathrm{C}_{2}$ are 30% Similar

2	1	4	1
1	2	1	2
2	1	2	1

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.3$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right)<s$ we want C_{1}, C_{2} to hash to NO common buckets (all bands should be different)
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in one particular band: $(0.3)^{5}=0.00243$
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in at least 1 of 20 bands: $1-(1-0.00243)^{20}=0.0474$
- In other words, approximately 4.74\% pairs of docs with similarity 0.3 end up becoming candidate pairs
- They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Involves a Tradeoff

2	1	4	1
1	2	1	2
2	1	2	1

- Pick:
- the number of minhashes (rows of \boldsymbol{M})
- the number of bands \boldsymbol{b}, and
- the number of rows r per band
to balance false positives/negatives
- Example: if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH - What We Want

Similarity $s=\operatorname{sim}\left(C_{1}, C_{2}\right)$ of two sets

What 1 Band of 1 Row Gives You

Similarity $s=\operatorname{sim}\left(C_{1}, C_{2}\right)$ of two sets

b bands, r rows/band

- Columns C_{1} and C_{2} have similarity s
- Pick any band (r rows)
- Prob. that all rows in band equal $=s^{r}$
- Prob. that some row in band unequal =1-s
- Prob. that no band identical $=\left(1-s^{r}\right)^{b}$
- Prob. that at least 1 band identical =

$$
1-\left(1-s^{r}\right)^{b}
$$

What b Bands of r Rows Gives You

S-curves as a Func. of b and r

Given a fixed threshold \boldsymbol{t}.

We want to choose \boldsymbol{r} and \boldsymbol{b} such that the P(Candidate pair) has a "step" right around \boldsymbol{t}.

Example: $b=20 ; r=5$

- Similarity level s
- Prob. that at least 1 band is identical:

\boldsymbol{s}	$\mathbf{1 - (1 - s}^{\mathbf{r}} \mathbf{b}^{\mathbf{b}}$
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Picking r and b : The S-curve

- Picking r and b to get the best S-curve
- 50 hash-functions ($r=5, b=10$)

Blue area: False Negative rate Green area: False Positive rate

LSH Summary

- Tune $\boldsymbol{M}, \boldsymbol{b}, \boldsymbol{r}$ to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to sets
- We used hashing to assign each shingle an ID
- Min-hashing: Convert large sets to short signatures, while preserving similarity
- We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- We used hashing to get around generating random permutations
- Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents
- We used hashing to find candidate pairs of similarity \geq s
- Notice that MinHash is only good for constructing LSH under the Jaccard similarity ;
- Other Hash functions exist for LSH under for other similarity metrics, e.g. cosine similarity or hamming distance etc.

Theory of Locality Sensitive Hashing (LSH)

general hashing

locality-sensitive hashing

Generalization of LSH for other Distance Metrics

- MinHash works for Jaccard Similiarity [$d(x, y)=1-\operatorname{sim}(x, y)$]
- Different LSH methods for other distance metrics:
- Cosine distance,
- Euclidean distance etc

Locality-Sensitive (LS) Families

Suppose we have a space S of points with a distance measure d

A family \boldsymbol{H} of hash functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for any \boldsymbol{x} and \boldsymbol{y} in S :

1. If $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y}) \leq \boldsymbol{d}_{1}$, then the probability over all $\boldsymbol{h} \in \boldsymbol{H}$, that $h(x)=h(y)$ is at least p_{1}
2. If $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y}) \geq \boldsymbol{d}_{2}$, then the probability over all $\boldsymbol{h} \in \boldsymbol{H}$, that $h(x)=h(y)$ is at most p_{2}

$\mathrm{A}\left(d_{11} d_{2 \prime} p_{11} p_{2}\right)$-sensitive function

High
probability; at least p_{1}

Recap: The S-Curve

- The S-curve is where the "magic" happens

Similarity s of two sets
This is what 1 band $\& 1$ row gives you

$$
\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)
$$

Similarity s of two sets
This is what we want!
How to get a step-function?
By choosing r rows and b bands!

Recap: The S-Curve

- The S-curve is where the "magic" happens

Distance d of two sets
This is what 1 band and 1 row gives you

$$
\begin{aligned}
\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right] & =\operatorname{sim}\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right) \\
& =1-\operatorname{distance}\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)
\end{aligned}
$$

Distance d of two sets
This is what we want!
How to get a step-function?
By choosing r rows and b bands !

$\mathrm{A}\left(d_{11} d_{2 \prime} p_{11} p_{2}\right)$-sensitive function

Large distance, low probability of hashing to the same value

Distance $d(x, y)$

Cosine Distance

- Cosine distance = angle between vectors from the origin to the points in question $\mathbf{d}(\mathbf{A}, \mathrm{B})=\theta=\arccos (\mathbf{A} \cdot \mathbf{B} /\|\mathbf{A}\| \cdot\|\mathrm{B}\|)$
- Has range $\mathbf{0} \ldots \boldsymbol{\pi}$ (equivalently $0 \ldots . .180^{\circ}$) $\frac{\text { A.B }}{\|B\|}$
- Can divide θ by $\boldsymbol{\pi}$ to have distance in range $0 . . .1$ - Cosine similarity = 1-d(A,B)
- But often defined as cosine sim: $\cos (\theta)=\frac{A \cdot B}{\|A\|\|B\|}$

Opposite scores
Score Vectors in opposite direction
Angle between then is near 180 deg
Cosine of angle is near -1 i.e. -100%

LSH for Cosine Distance

- For cosine similarity $=\cos \theta=(\mathbf{A} \cdot \mathbf{B} /\|A\|\|B\|)$
- $\operatorname{cosine~distance~} d(A, B)=\theta / 180$
- There is a technique called
Random Hyperplanes
- Technique similar to Minhashing
- Random Hyperplanes is a
$\left(d_{1}, d_{2},\left(1-d_{1} / 180\right)\right.$, (1- $\left.\left.d_{2} / 180\right)\right)$-sensitive family for any d_{1} and d_{2}
- Reminder: $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive

1. If $d(x, y) \leq d_{1}$, then prob. that $\boldsymbol{h}(x)=\boldsymbol{h}(y)$ is at least \boldsymbol{p}_{1}
2. If $d(x, y) \geq d_{2}$, then prob. that $\boldsymbol{h}(x)=\boldsymbol{h}(y)$ is at most p_{2}

Random Hyperplane

- Pick a random vector \boldsymbol{v}, which determines a , hash function $\boldsymbol{h}_{\boldsymbol{v}}$ with two buckets s.t.:

$$
h_{v}(x)=+1 \text { if } v \cdot x \geq 0 ;=-1 \text { if } v \cdot x<0
$$

Look in the plane of x and y.

Prob[Red case] = θ / 180
Hyperplane normáal to \mathbf{v}.

$$
\text { So: } P[h(x)=h(y)]=1-\theta / 180=1-d(x, y)
$$

Signatures for Cosine Distance

- Pick some number of random vectors v, and hash your data for each vector
- The result is a signature (sketch) of +1's and -1's for each data point: x, y, \ldots
- Can be used for LSH like we used the Minhash signatures for Jaccard distance
- Amplify using AND/OR constructions

How to pick random vectors?

- Expensive to pick a random vector in \boldsymbol{M} dimensions for large \boldsymbol{M}
- Would have to generate \boldsymbol{M} random numbers
- A more efficient (but approximated) approach
- It is "close enough" to consider only vectors \boldsymbol{v} consisting of +1 and -1 components
- Why? Assuming data is random, then vectors of $+/-1$ cover the entire space evenly (and does not bias in any way)
- This only gives an APPROXIMATED result, but not an exact one !!

LSH for Euclidean Distance

- Simple idea: Hash functions correspond to lines
- Partition the line into buckets of size a
- Hash each point to the bucket containing its projection onto the line
- Nearby points are always close; distant points are rarely in same bucket

Projection of Points

Buckets of size a

- "Lucky" case:
- Points that are close hash in the same bucket
- Distant points end up in different buckets
- Two "unlucky cases:
- Top: unlucky quantization
- Bottom: unlucky projection

Multiple Projections

Projection of Points

Bucket width a

- For example, If points are distance $d \leq a / \mathbf{2}$, the probability they are in same bucket $\geq \mathbf{1}-d / a=1 / 2$

Projection of Points

- For example, if points are distance $\boldsymbol{d} \geq \mathbf{2 a}$ apart, then they can be in the same bucket only if $d \cos \theta \leq a$ => $\cos \theta \leq 1 / 2$
So, for $60 \leq \theta \leq 90$, i.e., at most $1 / 3$ probability

An LSH-Family for Euclidean Distance

- If points are distance $\boldsymbol{d} \leq \boldsymbol{a / 2}$, prob. they are in same bucket $\geq 1-d / a=1 / 2$
- If points are distance $\boldsymbol{d} \geq \mathbf{2 a}$ apart, then they can be in the same bucket only if $\boldsymbol{d} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta} \leq \boldsymbol{a}$
- $\cos \theta \leq 1 / 2$
- $60 \leq \theta \leq 90$, i.e., at most $1 / 3$ probability
- Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a
- Amplify using AND-OR cascades

[^0]: 3 in intersection
 8 in union
 Jaccard similarity $=3 / 8$
 Jaccard distance $=5 / 8$

